
SIAM J. MATH. DATA SCI. c\bigcirc 2019 Society for Industrial and Applied Mathematics
Vol. 1, No. 2, pp. 333--355

Metric-Constrained Optimization for Graph Clustering Algorithms\ast

Nate Veldt\dagger , David F. Gleich\ddagger , Anthony Wirth\S , and James Saunderson\P

Abstract. We outline a new approach for solving linear programming relaxations of NP-hard graph clustering
problems that enforce triangle inequality constraints on output variables. Extensive previous research
has shown that solutions to these relaxations can be used to obtain good approximation algorithms
for clustering objectives. However, these are rarely solved in practice due to their high memory
requirements. We first prove that the linear programming relaxation of the correlation clustering
objective is equivalent to a special case of a well-known problem in machine learning called metric
nearness. We then develop a general solver for metric-constrained linear and quadratic programs
by generalizing and improving a simple projection algorithm, originally developed for metric near-
ness. We give several novel approximation guarantees for using our approach to find lower bounds
for challenging graph clustering tasks such as sparsest cut, maximum modularity, and correlation
clustering. We demonstrate the power of our framework by solving relaxations of these problems
involving up to 107 variables and 1011 constraints.

Key words. graph clustering, correlation clustering, sparsest cut, modularity, metric learning, projection meth-
ods

AMS subject classifications. 05C50, 05C85, 65K05, 68W25, 90C35

DOI. 10.1137/18M1217152

1. Introduction. Clustering is the task of identifying groups of closely related entities in
a large dataset, and is one of the most fundamental problems in data analysis. For problems
in which the dataset is specifically modeled by a graph, this problem is referred to as graph
clustering or community detection. In this paper we consider a special class of graph clustering
algorithms that come with theoretically rigorous approximation guarantees but rely on solving
expensive linear programs involving \Theta (n3) metric constraints of the form xij \leq xik + xjk,
where xij represents some form of distance between two nodes i and j in a graph of n nodes.

One of the best examples of a metric-constrained linear program is the canonical relaxation
of the correlation clustering integer linear program [6, 13]. Correlation clustering is a frame-
work for partitioning datasets characterized by pairwise similarity and dissimilarity scores,

\ast Received by the editors September 28, 2018; accepted for publication (in revised form) March 26, 2019; published
electronically June 4, 2019.

http://www.siam.org/journals/simods/1-2/M121715.html
Funding: The first author was supported by NSF award IIS-1546488, and the second author by NSF awards

CCF-1149756, IIS-1422918, IIS-1546488, NSF Center for Science of Information STC, CCF-0939370, DOE DE-
SC0014543, NASA, and the Sloan Foundation. The third author was supported by the Melbourne School of
Engineering.

\dagger Department of Mathematics, Purdue University, West Lafayette, IN 47907 (lveldt@purdue.edu).
\ddagger Department of Computer Science, Purdue University, West Lafayette, IN 47907 (dgleich@purdue.edu).
\S School of Computing and Information Systems, The University of Melbourne, Parkville, VIC 3052, Australia

(awirth@unimelb.edu.au).
\P Department of Electrical and Computer Systems Engineering, Monash University, Clayton, VIC 3800, Australia

(james.saunderson@monash.edu).

333

http://www.siam.org/journals/simods/1-2/M121715.html
mailto:lveldt@purdue.edu
mailto:dgleich@purdue.edu
mailto:awirth@unimelb.edu.au
mailto:james.saunderson@monash.edu

334 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

and can be equivalently viewed as a clustering problem on signed graphs. The framework has
been applied to problems in bioinformatics [27], social network analysis [48], image segmenta-
tion [31], and many other domains. Correlation clustering has been extensively studied from
a mathematical and computational perspective, and many of its best-known approximations
rely on rounding a metric-constrained linear programming (LP) relaxation [2, 14, 41, 42, 48].
Unfortunately, these algorithms are rarely implemented due to the high memory requirement
of traditional solvers. Other graph clustering objectives with well-studied metric-constrained
relaxations include sparsest cut [35], cluster deletion [48], modularity clustering [1], and max-
imum cut [5, 40].

In our work we develop a new approach for solving metric-constrained linear programs
based on projection methods, which come with a significantly smaller memory footprint than
standard solvers. This approach allows data scientists to implement clustering approximation
algorithms that come with strong guarantees, but were previously only viewed as theoretical
results. The starting point in our research is the observation that the LP relaxation for
correlation clustering is equivalent to a special case of the \ell 1 metric nearness problem [12].
Based on this, we develop a general strategy for metric-constrained optimization that is related
to the iterative triangle-fixing algorithms that Dhillon, Sra, and Tropp developed for metric
nearness [19]. This approach considers a regularized linear program that is closely related to
the original LP, but can be solved using Dykstra's projection method [21]. We generalize and
improve the techniques of Dhillon, Sra, and Tropp to apply them more broadly to any metric-
constrained linear or quadratic program. Our method comes with a more robust stopping
criterion and an entrywise rounding procedure when the solver is close to convergence, which
improves the runtime and effectiveness of the solver. We apply this framework to solving
metric-constrained LP relaxations of correlation clustering and sparsest cut, and prove several
novel guarantees regarding lower bounds to these objectives.

In practice we are able to solve the Leighton--Rao relaxation for sparsest cut on graphs
with up to thousands of nodes. For correlation clustering, we solve dense problems involving
up to 11 thousand nodes, 6\times 107 variables, and 7\times 1011 constraints. We additionally show how
our method can be used to obtain good approximation guarantees and improved algorithmic
results for maximum modularity clustering.

2. Background and related work. Many theoretical approximation algorithms for clus-
tering rely on solving metric-constrained LPs [2, 35, 41, 48], but limited work has addressed
practical implementations. Wirth noted that the LP relaxation of correlation clustering can
be solved more efficiently by using a multicommodity flow formulation of the problem, though
this is still very expensive in practice [51]. Van Gael and Zhu employed an LP chunking
technique which allowed them to solve this relaxation on graphs with nearly 500 nodes [46].
The LP rounding algorithm of Charikar, Guruswami, and Wirth [13] inspired others to use
metric-constrained LPs for modularity clustering [1] and joint-clustering of image segmenta-
tions [24, 49]. In practice these algorithms scale to only a few hundred nodes when a full
set of O(n3) constraints is included. In the case of sparsest cut, Lang and Rao developed
a practical algorithm closely related to the original Leighton--Rao algorithm [32], which was
later evaluated empirically by Lang, Mahoney, and Orecchia [33]. However, the algorithm
only heuristically solves the underlying multicommodity flow problem, and therefore does not

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 335

satisfy the same theoretical guarantees.
Recent work has shown that correlation clustering problems can be solved to optimality

more efficiently using MaxSAT-based integer programming solvers [9, 38]. While these typ-
ically do not scale past a few hundred nodes, Miyauchi, Sonobe, and Sukegawa were able
to solve sparse correlation clustering problems involving up to 2500 nodes. Their approach
relied crucially on the observation that for sparse problems, a significant number of the metric
constraints do not need to be explicitly included by the integer program [38], though this
approach does not apply to dense instances.

There also exist approaches which provide lower bounds and approximate solutions for
correlation clustering by considering the dual of LP relaxations that are not the canonical
metric-constrained LP [34, 44]. These approaches can be combined with fast local clustering
heuristics to obtain good output clusterings, but cannot be used to implement correlation
clustering approximation algorithms that come with the best-known a priori guarantees. To
realize the power of these approximation guarantees, we need scalable solvers for the canonical
LP.

3. Graph clustering and metric-constrained linear programs. Formally, we define a
metric-constrained optimization problem to be an optimization problem involving constraints
of the form xij \leq xik + xjk, where xij is a nonnegative variable representing a distance score
between two objects i and j in a given dataset. Optimization problems of this form arise
very naturally in the study of graph clustering objectives, since any strict clustering \scrC for a
graph G = (V,E) is in one-to-one correspondence with a set of binary variables xij satisfying
triangle inequality constraints:\Biggl\{

xij \in \{ 0, 1\} for all i, j and

xij \leq xik + xjk for all i, j, k
\Leftarrow \Rightarrow \exists \scrC such that xij =

\Biggl\{
0 if i, j are together in \scrC ,
1 otherwise .

Metric-constrained linear programming relaxations have been introduced and studied for a
large number of graph clustering objectives, including modularity [1], cluster deletion [48], and
maximum cut [40]. In our work we focus, in particular, on metric-constrained LP relaxations
of correlation clustering and sparsest cut, as special case studies. We will show in this section
that the correlation clustering relaxation is, in fact, equivalent to the so-called metric nearness
problem (Theorem 3.1), which will be the starting point for our development of practical
techniques for solving metric-constrained graph clustering relaxations.

3.1. Correlation clustering. Correlation clustering is an NP-hard problem for partitioning
a signed graph G = (V,W+,W -) [6, 52]. Each pair of distinct nodes i and j in G possesses
two nonnegative weights, w+

ij \in W+ and w -
ij \in W - , indicating measures of similarity and

dissimilarity, respectively. The goal is to cluster the nodes in a way that minimizes the total
quantity of mistakes, where the mistake at pair (i, j) is w+

ij if i and j are separated, but w -
ij

if they are clustered together. The objective can be written formally as an integer linear
program (ILP):

(3.1)

minimize
\sum

i<j w
+
ijxij + w -

ij(1 - xij)

subject to xij \leq xik + xjk for all i, j, k,
xij \in \{ 0, 1\} for all i, j.

336 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

An equivalent problem is to maximize the weight of agreements, which is the same at opti-
mality, but different in terms of approximation algorithms [6]. When we relax the above ILP
by replacing xij \in \{ 0, 1\} with the constraint xij \in [0, 1], this becomes a metric-constrained
linear program that has been extensively studied in the literature. Semidefinite programming
(SDP) relaxations for correlation clustering have also been studied [13, 43], and many heuristic
algorithms have also been developed. However, the best approximation results for minimiz-
ing disagreements in both general weighted graphs (an O(log n) approximation [13, 17, 22]),
and complete unweighted graphs (an approximation slightly better than 2.06 [14]) depend on
first solving the LP relaxation. The best results for special weighted cases and deterministic
pivoting algorithms also rely on solving the LP relaxation [48, 47, 41]. It is worth noting that
the majority of these instances constitute dense correlation clustering problems.

3.2. Sparsest cut. A set S \subset V of vertices in an n-node graph G = (V,E) defines a cut by
considering the set of edges with one endpoint in S and the other endpoint in the complement,
\=S = V \setminus S, of S. The sparsity of the cut defined by S is

\phi (S) =
cut(S)

| S|
+

cut(S)

| \=S|
=

n cut(S)

| S| | \=S|
,

where cut(S) indicates the number of edges between S and \=S. Leighton and Rao gave an
O(log n)-approximation for finding the minimum cut sparsity, \phi \ast = minS\subset V \phi (S) [35]. Their
approach is equivalent to solving the following metric-constrained LP relaxation for \phi \ast :

(3.2)

minimize
\sum

(i,j)\in E xij
subject to

\sum
i<j xij = n

xij \leq xik + xjk for all i, j, k,
xij \geq 0 for all i, j

and rounding the solution into a cut. The Leighton--Rao O(log n) approximation for sparsest
cut was for many years the best approximation for this problem, until Arora, Rao, and Vazirani
developed an O(

\sqrt{}
log(n)) approximation based on an SDP relaxation [4].

3.3. Metric nearness. The metric nearness problem [12] seeks the nearest metric ma-
trix X\ast = (x\ast ij) to a dissimilarity matrix D = (dij). Here, a dissimilarity matrix is a nonneg-
ative, symmetric, zero-diagonal matrix, and a metric matrix is a dissimilarity matrix whose
entries satisfy metric constraints. If Mn represents the set of metric matrices of size n \times n,
then the \ell p version of the problem can be formalized as follows:

(3.3) X\ast = argminX\in Mn

\biggl(\sum
i \not =j

wij | (xij - dij)| p
\biggr) 1/p

,

where wij \geq 0 is a weight indicating how strongly we wish X\ast and D to coincide at entry ij.
When p = 1, the problem can be cast as a linear program by introducing variables M = (mij):

(3.4)

minimize
\sum

i<j wijmij

subject to xij \leq xik + xjk for all i, j, k,
xij - dij \leq mij for all i, j,
dij - xij \leq mij for all i, j,

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 337

where the last two constraints ensure that at optimality, mij = | xij - dij | . Our first theorem
shows that LP (3.1) and LP (3.4) are, in fact, equivalent.

Theorem 3.1. Consider an instance of correlation clustering G = (V,W+,W -) and set
wij = | w+

ij - w -
ij | . Define an n \times n matrix D = (dij), where dij = 1 if w -

ij > w+
ij and dij = 0

otherwise. Then X = (xij) is an optimal solution to the LP relaxation of (3.1) if and only if
(X,M) is an optimal solution for (3.4), where M = (mij) = (| xij - dij |).

Proof. We will assume that at most one of w+
ij , w

 -
ij is positive, so every pair of nodes is

either labeled similar or dissimilar. If this were not the case, we could introduce new edge
weights (\~w+

ij , \~w
 -
ij) for each pair ij defined to be (\~w+

ij , \~w
 -
ij) = (w+

ij - w -
ij , 0) when w+

ij \geq w -
ij and

(\~w+
ij , \~w

 -
ij) = (0, w -

ij - w+
ij) otherwise. This change of variables would alter the LP objective by

only an additive constant, so the optimal LP solution would remain the same.
We equivalently consider an unsigned graph G\prime = (V,E) with the same node set V and

an adjacency matrix A = (Aij), where Aij = 1 if w -
ij = 0 and Aij = 0 otherwise. If

wij = max\{ w+
ij , w

 -
ij\} , the correlation clustering LP objective function can then be written as

(3.5)
\sum
i<j

wij (Aijxij + (1 - Aij)(1 - xij)) .

Define a dissimilarity matrix D = (dij) by setting dij = 1 - Aij . Notice that because dij \in
\{ 0, 1\} and xij \in [0, 1], the key factor in the objective can be simplified in the following way:

(1 - dij)xij + dij(1 - xij) = | xij - dij | ,

and the LP relaxation of correlation clustering shown in (3.5) is equivalent to

(3.6)

minimize
\sum

i<j wij | xij - dij |
subject to xij \leq xik + xjk for all i, j, k,

0 \leq xij \leq 1 for all i, j.

The only difference between this objective and \ell 1 metric nearness is that it includes the
constraint 0 \leq xij \leq 1. One can show that dropping these bounds does not change the
optimal solution. The full proof follows from a lengthy case-by-case analysis. The idea, in
short, is to consider any feasible solution that includes at least one variable xij /\in [0, 1]. We
construct a new solution by replacing any xij < 0 with a new variable x\prime ij = 0, and similarly
replace xij > 1 with x\prime ij = 1. By checking different cases, one can show that the resulting
solution will still be feasible and have a strictly smaller objective score.

4. Projection methods for metric-constrained optimization. We can state the linear
programs in the previous section abstractly in the form

(4.1) min
x

cTx subject to Ax \leq b,

where A has \Theta (n3) rows and \Theta (n2) columns, but is very sparse. Standard optimization
software will be unable to solve these LPs for large values of n, due to memory constraints, so

338 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

we turn our attention to a simple projection method for solving a related quadratic program
(QP), a regularization of (4.1):

(4.2) min
x

Q(x) = cTx+
1

2\gamma
xTWx subject to Ax \leq b.

In (4.2), above, W is a diagonal matrix with positive diagonal entries and \gamma > 0. When W is
the identity matrix, there exists some \gamma 0 > 0 such that for all \gamma > \gamma 0, the optimal solution to
the quadratic program corresponds to the minimum 2-norm solution of the original LP [37].
The dual of (4.2) is another quadratic program:

max
y

D(y) = - bTy - \gamma

2
(ATy + c)TW - 1(ATy + c) subject to y \geq 0.(4.3)

The core of our algorithm for solving (4.2) is Dykstra's projection method [21], which is
typically presented as a way to solve the best approximation problem (BAP). Formally, let
Ci \subset \BbbR N for i = 1, 2, . . . ,M be convex sets, and let C = \cap M

i=1Ci be their intersection (also
convex). Given z \in \BbbR N , the best approximation problem seeks PC(z), the projection of z onto
C:

(4.4) x\ast = PC(z) = argmin
x\in C

| | x - z| | 2

for some norm | | \cdot | | . Dykstra's method starts with an initial point x0 = z and iteratively
performs simpler projections onto convex sets Ci in a way that is guaranteed to solve (4.4).

To cast (4.2) as an instance of BAP (4.4) so that we can apply Dykstra's method, we use
a weighted norm defined by \| v\| 2w = (1/\gamma)vTWv and a starting vector z = - \gamma W - 1c so that

\| x - z\| 2w =
\bigm\| \bigm\| x+ \gamma W - 1c

\bigm\| \bigm\| 2
w
=

1

\gamma
xTWx+ 2xT c+ \gamma cTW - 1c.

Since the final term is a constant, we see that the minimizers of (4.2) and (4.4) are the same
if we are projecting onto half space constraints of the form Ci = \{ x \in \BbbR N : aTi x \leq bi\} , where
ai is the ith row of the constraint matrix A in (4.2) and bi is the ith entry of b.

Algorithm 4.1 shows Dykstra's method applied to quadratic program (4.2). The method
iteratively updates a set of primal and dual variables x and y that are guaranteed to converge
to the optimal solutions of (4.2) and (4.3), respectively. When applied to strongly convex
quadratic programs such as (4.2), Dykstra's method is equivalent to Hildreth's projection
method [26], and is guaranteed to have a linear convergence rate [23]. Our full algorithmic
approach takes Dykstra's method and includes a number of key features that allow us to
efficiently obtain high-quality solutions to metric-constrained problems in practice. The first
feature, a procedure for locally performing projections at metric constraints, is the key insight
which led Dhillon, Sra, and Tropp to develop efficient algorithms for metric nearness [19]. In
addition, we detail a sparse storage scheme for dual vectors, and include a more robust con-
vergence check that leads to better constraint satisfaction and stronger optimality guarantees.

4.1. Efficient local updates. Projections of the form x := x + \alpha W - 1ai for W diagonal
and \alpha constant will change x by at most the number of nonzero entries of ai, the ith row
of constraint matrix A. In the case of triangle-inequality constraints, which dominate our
constraint set, there are exactly three nonzero entries per constraint, so we perform each
projection in a constant number of operations.

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 339

Algorithm 4.1 Dykstra's Method for Quadratic Programming.

Input: A \in \BbbR N\times M ,b \in \BbbR M , c \in \BbbR N , \gamma > 0,W \in \BbbR N\times N (diagonal, positive definite)
Output: \^x = argminx\in \scrA Q(x), where \scrA = \{ x \in \BbbR N : Ax \leq b\}
y := 0 \in \BbbR M , x := - \gamma W - 1c, k := 0
while not converged do

5: k := k + 1
(Visit constraints cyclically): i := (k - 1) mod M + 1
(Perform correction step): x := x+ yi(\gamma W

 - 1ai), where ai is the ith row of A

(Perform projection step): x := x - \theta +i (\gamma W
 - 1ai), where \theta +i =

\mathrm{m}\mathrm{a}\mathrm{x}\{ aT
i x - bi,0\}

\gamma aT
i W - 1ai

(Update dual variables): yi := \theta +i \geq 0

4.2. Sparse storage of dual variables. For constraint sets that include triangle inequali-
ties for every triplet of nodes (i, j, k), the dual vector y will be of length \Theta (n3). Observe that
the correction step in Algorithm 4.1 at constraint t will be nontrivial if and only if there was
a nontrivial projection the last time the constraint was visited. In other words, \theta +t became
nonzero in the update step of the previous round, and therefore yt > 0. Note that each triplet
(i, j, k) corresponds to three different metric constraints: xij - xik - xjk \leq 0, xjk - xik - xij \leq 0,
and xik - xij - xjk \leq 0, and in each round at most one of these constraints will be violated,
indicating that at least two dual variables will be zero. Dhillon, Sra, and Tropp concluded
that

\bigl(
n
3

\bigr)
floating point numbers must be stored in implementing Dykstra's algorithm for the

metric nearness problem [18]. We further observe, especially for the correlation clustering LP,
that, in practice, often for a large percentage of triplets (i, j, k), none of the three metric con-
straints are violated. Thus, we can typically avoid the worst-case \Theta (n3) memory requirement
by storing y sparsely. In practice, therefore, we only store pairs (t, yt) for yt > 0, in either
a dictionary with random access, or an array which the method traverses in the same cyclic
order each round.

4.3. Robust stopping criteria. Many implementations of Dykstra's method stop when
the change in vector x drops below a certain tolerance after one or more passes through the
entire constraint set. However, Birgin and Raydan [10] noted that in some cases this may
occur even when the iterates are far from convergence. Because we are applying Dykstra's
method specifically to quadratic programming, we can obtain a much more robust stopping
criterion by monitoring the dual objective function in a manner similar to the approach of
Dax [16].

Let (xk,yk) denote the pair of primal and dual vectors computed by Dykstra's method
after k projections. We know that these vectors will converge to an optimal pair (\^x, \^y) such
that D(\^y) = \^Q = Q(\^x), where \^Q is the optimal objective for both the primal (4.2) and
dual (4.3) quadratic programs. The Karush--Kuhn--Tucker (KKT) optimality conditions state
that the pair (\^x, \^y) is optimal for the primal (4.2) and dual (4.3) quadratic programs if and
only if

1. A\^x \leq b, 2. \^yT (A\^x - b) = 0, 3. (W/\gamma)\^x = - AT \^y - c, 4. \^y \geq 0.

The update step yi := \theta +i in Algorithm 4.1 guarantees that the last two KKT conditions are

340 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

always satisfied. In other words, at iteration k, variables (xk,yk) can be shown to satisfy
yk \geq 0 and (W/\gamma)xk = - ATyk - c. This means that yk is always feasible for the dual (4.3).
By weak duality we have the following lower bound on the optimal value of (4.2):

(4.5) D(yk) = - bTyk -
\gamma

2
(ATyk + c)TW - 1(ATyk + c) = - bTyk -

1

2\gamma
xT
kWxk.

Dykstra's method is known to be equivalent to applying a coordinate-ascent procedure
to a dual objective [45]. Thus, updating the dual variables via Dykstra's method provides a
strictly increasing lower bound D(yk) which converges to \^Q (see the work of Dax for more
details [16]). Meanwhile, Q(xk) does not necessarily upper bound \^Q since xk is not necessarily
feasible. However, xk converges to the optimal primal solution, so as the algorithm progresses,
the maximum constraint violation of xk decreases to zero. In practice, once xk has satisfied
constraints to within a small enough tolerance, we treat Q(xk) as an upper bound. After
each pass through the constraints we check the primal-dual gap and maximum constraint
violation, given by \omega k = [D(yk) - Q(xk)]/D(yk) and \rho k = maxi(bi - aTi xk), respectively, and
stop when both have fallen below a user-defined tolerance. Computing \rho k exactly requires
that we check \Theta (n3) constraints. However, this will be significantly faster than performing
another pass through the constraints using Dykstra's method, since we are only checking
constraint violations and not performing projection operations. In practice, we can also avoid
increasing the running time too much by only performing a full constraint check every C
iterations for some integer C, or simply returning false in the convergence check as soon as a
violated constraint is encountered. Since this step only involves reading entries from a matrix,
it is also easy to parallelize.

4.4. Entrywise rounding procedure. Our convergence check also includes a novel round-
and-check procedure on the Dykstra iterate xk. Because xk \rightarrow \^x, we know that after a certain
point, the maximum entrywise difference between \^x and xk (i.e., \| \^x - xk\| \infty) will be small.
Once \rho k has dropped below a given tolerance and we know we are close to convergence, we
can round every entry of xk to r significant figures: xr = round(xk, r). If xk is close enough
to optimality and we have chosen a good r, xr will satisfy constraints to within the desired
tolerance. We will then have an objective exactly or nearly equal to the best lower bound
we have for \^Q: [D(yk) - Q(xr)]/D(yk) \leq \epsilon . If xr does not satisfy constraints or has a poor
objective score, we simply continue with the original Dykstra iterate xk. The best choice
of r and the benefit of this procedure will depend heavily on the user-defined tolerance, the
specific objective, and the problem instance. In our experiments section we provide further
details for how to set r and how this procedure performs for different objectives.

5. Approximation guarantees for clustering objectives. The results of Mangasarian [37]
confirm that for all \gamma greater than some \gamma 0 > 0, the original linear program (4.1) and the
quadratic regularization (4.2) have the same optimal solution. However, it is challenging to
compute \gamma 0 in practice, and if we set \gamma to be too high, then this may lead to very slow con-
vergence for solving QP (4.2) using projection methods. Dhillon, Sra, and Tropp [19] suggest
ways to set \gamma for variants of the metric nearness problem based on empirical observations, but
no approximation guarantees are provided. A key contribution in our work is a set of results,
outlined in this section, which show how to set W and \gamma in order to obtain specific guarantees

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 341

for approximating the correlation clustering and sparsest cut objectives. These results hold
for all \gamma > 0, whether larger or smaller than the unknown value \gamma 0.

5.1. Correlation clustering. Consider a correlation clustering problem on n nodes where
each pair of nodes (i, j) is either strictly similar or strictly dissimilar, with a nonzero weight
wij > 0. That is, exactly one of the weights (w -

ij , w
+
ij) is positive and the other is zero.

We focus on the LP relaxation for this problem given in the form of the \ell 1 metric nearness
LP (3.4). We slightly alter this formulation by performing a change of variables yij = xij - dij .
The LP can then be written equivalently as

(5.1)

minimize
\sum

i<j wijmij

subject to yij - yik - yjk \leq bijk for all i, j, k,
yij \leq mij for all i, j,
 - yij \leq mij for all i, j,

where bijk = - dij + dik + djk is defined so that the implicit variables xij = yij + dij satisfy

triangle inequalities. To write this LP in the format of (4.1), we let x =
\bigl[
y m

\bigr] T
and

let c =
\bigl[
0 w

\bigr] T
, where y,m represent linearizations of the doubly-indexed (yij) and (mij)

variables. The vector w = (wij) stores the positive weights for node pairs. Rather than
minimizing cTx =

\sum
i<j wijmij , we have a method that can minimize the quadratic objective

cTx + 1
2\gamma x

TWx over the same constraint set. We construct a weight matrix that contains
two copies of the weight vector w, one to match up with the y vector and one corresponding
to m:

(5.2) W =

\biggl[
diag(w) 0

0 diag(w)

\biggr]
.

The quadratic regularization of the original LP objective is then

(5.3) min
x

cTx+
1

2\gamma
xTWx = min

(mij),(yij)

\sum
i<j

wijmij +
1

2\gamma

\sum
i<j

wijm
2
ij +

1

2\gamma

\sum
i<j

wijy
2
ij .

For both (5.1) and (5.3), the constraints enforce | yij | \leq mij . Since the objectives are being
minimized, this guarantees mij = | yij | =\Rightarrow m2

ij = y2ij at optimality. This allows us to replace

y2ij with m2
ij in (5.3). We rewrite the objective using terms only involving mij variables:

(5.4) min
(mij),(yij)

\sum
i<j

wijmij +
1

\gamma

\sum
i<j

wijm
2
ij .

Let (m\ast
ij) and (y\ast ij) be optimal for (5.1) and (\^mij), (\^yij) be optimal for (5.4). Then

(5.5)
\sum
i<j

wij \^mij +
1

\gamma

\sum
i<j

wij \^m
2
ij \leq

\sum
i<j

wijm
\ast
ij +

1

\gamma

\sum
i<j

wij(m
\ast
ij)

2 \leq
\biggl(
1 +

1

\gamma

\biggr) \sum
i<j

wijm
\ast
ij .

In the last step above we have used the fact that m\ast
ij = | y\ast ij | \leq 1 =\Rightarrow m\ast

ij \leq (m\ast
ij)

2. This
proves an approximation result for correlation clustering.

342 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

Theorem 5.1. Let (m\ast
ij) and (y\ast ij) be the optimal solution vectors for the correlation clus-

tering LP relaxation given in (5.1), and let (\^mij), (\^yij) be the optimal solution to (5.3). Then\sum
i<j wijm

\ast
ij \leq

\sum
i<j wij \^mij \leq (1 + 1/\gamma)

\sum
i<j wijm

\ast
ij .

Therefore, given any rounding procedure for the original LP that gives a factor p approxi-
mation for a correlation clustering problem, we can instead solve the related QP using pro-
jection methods and round the output to obtain a factor p(1 + 1/\gamma) approximation. For
weighted correlation clustering, the best rounding procedures guarantee an O(log n) approxi-
mation [13, 17, 22], so this can still be achieved even if we use a small value for \gamma .

5.2. Sparsest cut. The Leighton--Rao LP relaxation for sparsest cut is presented in (3.2).
This LP has a variable xij for every pair of distinct nodes i < j in some unweighted graph
G = (V,E). Let x = (xij) be a linearization of these distance variables, and define c = (cij)
to be the adjacency indicators, i.e., cij = 1 if (i, j) \in E and cij = 0 otherwise, so that the
objective can be written as minx cTx. If we assume we have chosen a weight matrix W and
a parameter \gamma > 0, the regularized version of (3.2) has the objective

min
x

\sum
i<j

cijxij +
1

2\gamma

\sum
i<j

wijx
2
ij .

If we set wij = cij , we would be able to use steps analogous to our approach for dense
correlation clustering and obtain a 1/(2\gamma) approximation for the original LP, by solving the
regularized QP. However, many of the cij variables are zero, and we must avoid setting wij = 0,
since W needs to be positive definite in order for our projection method to apply. Instead we
introduce another parameter, \lambda \in (0, 1), and define a set of weights w = (wij), where wij = 1
if (i, j) \in E and wij = \lambda otherwise. In this way, the weight wij is still positive but can be near
zero (i.e., near cij) when (i, j) /\in E. We can then prove the following approximation result.

Theorem 5.2. Let G = (V,E) be a connected graph with n = | V | > 4. Let \phi \ast be the
minimum cut sparsity for G and assume that each side of the sparsest cut partition has at
least two nodes. Let \gamma > 0, W = diag(w) be defined as above for a given \lambda \in (0, 1), and let
\scrA denote the set of constraints from the Leighton--Rao LP relaxation for sparsest cut. Then

min
x\in \scrA

cTx+
1

2\gamma
xTWx \leq

\biggl(
1 +

1 + \lambda n

2\gamma

\biggr)
\phi \ast .

Proof. The quadratic regularization of the sparsest cut LP relaxation is

(5.6)

minimize
\sum

i<j cijxij + (1/2\gamma)
\sum

i<j wijx
2
ij

subject to
\sum

i<j xij = n

xij \leq xik + xjk for all i, j, k,
xij \geq 0 for all i, j.

The result we prove here relates the optimal solution of (5.6) directly back to the minimum
sparsity \phi \ast , rather than back to the LP relaxation of sparsest cut (3.2). This makes sense
given that our purpose in solving these convex relaxations is to develop approximation results
for the original NP-hard sparsest cut objective.

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 343

Let S\ast \subset V be the set of nodes inducing the sparsest cut partition of G, so that

\phi \ast =
cut(S\ast)

| S\ast |
+

cut(S\ast)

| \=S\ast |
=

ncut(S\ast)

| S\ast | | \=S\ast |
.

Without loss of generality, assume | S\ast | \leq | \=S\ast | . In the statement of the theorem we assume
that G is connected, n > 4, and | S\ast | > 1. The connectivity of G ensures the problem cannot
be trivially solved by finding a single connected component, and guarantees that cut(S\ast) \geq 1.
Together the remaining two assumptions guarantee that n

| S\ast | | \=S\ast | \leq
n

2(n - 2) \leq 1, which will be

useful later in the proof. We will also use the fact that n
| S\ast | | \=S\ast | \leq

ncut(S\ast)
| S\ast | | \=S\ast | = \phi \ast . Note that if

n \leq 4, the problem is trivial to solve by checking all possible partitions, and if | S\ast | = 1, then
the sparsest cut problem is easy to solve by checking all n partitions that put a single node
by itself.

In order to encode the optimal partition as a vector, define s\ast = (s\ast ij) by

s\ast ij =

\Biggl\{
n

| S\ast | | \=S\ast | if nodes i and j are on opposite sides of the partition \{ S\ast , \=S\ast \} ,
0 otherwise.

Observe that this vector s\ast satisfies the constraints of (5.6) and that\sum
i<j

cijs
\ast
ij =

\sum
(i,j)\in E

s\ast ij =
cut(S\ast)n

| S\ast | | \=S\ast |
= \phi \ast .

We can also prove a useful bound on the quadratic term in the objective:

(s\ast)TWs\ast =
\sum
i<j

wij(s
\ast
ij)

2 =
\sum

(i,j)\in E

(s\ast ij)
2 +

\sum
(i,j)/\in E

\lambda (s\ast ij)
2

<
\sum

(i,j)\in E

(s\ast ij)
2 +

\sum
i<j

\lambda (s\ast ij)
2 = cut(S\ast)

n2

| S\ast | 2| \=S\ast | 2
+ \lambda | S\ast | | \=S\ast | n2

| S\ast | 2| \=S\ast | 2

= \phi \ast n

| S\ast | | \=S\ast |
+ \lambda n

n

| S\ast | | \=S\ast |
\leq \phi \ast (1 + \lambda n),

where we have used the fact that n/(| S\ast | | \=S\ast |) \leq min\{ 1, \phi \ast \} because of our simple assumptions
on G. Let \^x be the optimal solution for QP (5.6), and recall that s\ast is another feasible point.
We combine the bounds shown above to prove the final result:\sum

i<j

cij \^xij <
\sum
i<j

cij \^xij +
1

2\gamma

\sum
i<j

wij \^x
2
ij \leq

\sum
i<j

cijs
\ast
ij +

1

2\gamma

\sum
i<j

wij(s
\ast
ij)

2 \leq \phi \ast +
1

2\gamma
(1 + \lambda n)\phi \ast .

This completes the proof.

6. Improved a posteriori approximations. The approximation bounds in the previous
section provide a priori insights for how to set parameters \gamma and W before running Dykstra's
projection algorithm to solve relaxations of sparsest cut and correlation clustering. In this
section we outline improved a posteriori guarantees that can be achieved once we have obtained
a solution to the regularized LP.

344 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

6.1. A first strategy for improved bounds. Consider again the optimal solutions to the
linear program and its regularized objective x\ast = argmin\scrA cTx and \^x = argmin\scrA cTx +
(xTWx)/(2\gamma), where \scrA = \{ x \in \BbbR N : Ax \leq b\} is the set of feasible solutions. For both
correlation clustering and sparsest cut, we have proven a sequence of inequalities of the form

cTx\ast \leq cT \^x \leq cT \^x+
1

2\gamma
\^xTW\^x \leq cTx\ast +

1

2\gamma
(x\ast)TW(x\ast) \leq (1 +A)OPT,

where A is a term in the approximation factor (in our settings, 1/\gamma or (1 + \lambda n)/\gamma) and OPT
is the optimal score for the NP-hard objective. Given \^x, we can improve this approximation
result by computing R = (\^xTW\^x)/(2\gamma cT \^x) and noting that

cT \^x+
1

2\gamma
\^xTW\^x = (1 +R)cT \^x =\Rightarrow cT \^x \leq

\biggl(
1 +A

1 +R

\biggr)
OPT.

We find that in a number of correlation clustering settings, computing R will provide a sig-
nificantly improved approximation guarantee.

6.2. Improved guarantees by solving a small LP. We outline one more approach for
getting improved approximation guarantees, this time based on a careful consideration of
dual variables \^y computed by Dykstra's method. We again start by considering the initial
linear program which we assume is too challenging to solve using traditional LP software
because of memory constraints,

(6.1) min
x

cTx subject to Ax \leq b,

and let x\ast denote the (unknown) optimizer for this LP. In practice, we solve a quadratic
regularization:

(6.2) min
x

Q(x) = cTx+
1

2\gamma
xTWx subject to Ax \leq b.

We solve (6.2) to find a primal-dual pair of vectors (\^x, \^y) satisfying KKT conditions, and in
particular, in section 4.3 we saw that

1

\gamma
W\^x = - AT \^y - c,(6.3)

 - bT \^y - 1

2\gamma
\^xTW\^x = cT \^x+

1

2\gamma
\^xTW\^x.(6.4)

Given this setup, we prove a new theorem for obtaining a lower bound on cTx\ast by considering
\^y and solving another small, less computationally expensive LP.

Theorem 6.1. Given (\^x, \^y), set \^p = (1/\gamma)W\^x, and let \~x be the optimal solution to the
following new linear program: maxx \^pTx subject to cTx \leq cT \^x and x \in \scrB , where \scrB is any
set which is guaranteed to contain x\ast (i.e., \scrB encodes a subset of constraints that are known to
be satisfied by x\ast). Then we have the following lower bound on the optimal solution to (6.1):

(6.5) - bT \^y - \^pT \~x \leq cTx\ast .

Furthermore, if x\ast = \^x = \~x, then this bound is tight.

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 345

Proof. The dual of the original linear program (6.1) is

(6.6) max - bTy subject to - ATy - c = 0 and y \geq 0.

One way to obtain a lower bound on cTx\ast would be to find some feasible point y for (6.6),
in which case - bTy \leq cTx\ast . Note from (6.3) that we have access to a vector \^y satisfying
\^y \geq 0 and - AT \^y - c = \^p = (1/\gamma)W\^x. This \^y is not feasible for (6.6), but we note that if the
entries of \^p are very small (which they will be for large \gamma), then the constraint - ATy - c = 0
is nearly satisfied by \^y. If we define a new vector \^c = c + \^p, then we can observe that \^y is
feasible for a slightly perturbed linear program:

(6.7) max - bTy subject to - ATy - \^c = 0 and y \geq 0.

Observe that this is the dual of a slight perturbation of the original LP (6.1):

(6.8) min
x

\^cTx subject to Ax \leq b.

Since x\ast is feasible for (6.8) and \^y is feasible for its dual (6.7), we have the following inequality:

(6.9) - bT \^y \leq \^cTx\ast = cTx\ast + \^pTx\ast .

Finally, observe that x\ast is feasible for the LP (6.1) defined in the statement of the theorem,
and therefore, \^pTx\ast \leq \^pT \~x. Combining this fact with (6.9) we get our final result:

 - bT \^y \leq cTx\ast + \^pTx\ast \leq cTx\ast + \^pT \~x =\Rightarrow - bT \^y - \^pT \~x \leq cTx\ast .

If we happen to choose \gamma > 0 and W in such a way that x\ast = \^x, and then pick a set \scrB so
that \~x = x\ast , then property (6.4) ensures that this bound will be tight.

6.3. A bound for sparsest cut. Consider the quadratic regularization of the sparsest cut
relaxation shown in (5.6), with diagonal weight matrix defined as in section 5.2. Assume
(\^x, \^y) is the set of primal and dual variables obtained by solving the objective with Dykstra's
method. We give a corollary to Theorem 6.1 that shows how to obtain good a posteriori
approximations for how close cT \^x is to the original LP relaxation of sparsest cut (3.2).

Corollary 6.2. Let \~x = (\~xij) be the optimizer for the following LP:

(6.10)

maximize (1/\gamma)
\sum

i<j(wij \^xij)xij
subject to

\sum
i<j xij = n,\sum
(i,j)\in E xij \leq

\sum
(i,j)\in E \^xij ,

0 \leq xij \leq n/(n - 1) for all i, j.

Let \^y1 and \^y2 be correction variables within the dual vector \^y, corresponding to the constraints\sum
i<j xij \leq n and -

\sum
i<j xij \leq - n, respectively, which combine to form the equality constraint\sum

i<j xij = n. Then

 - n\^y1 + n\^y2 -
1

\gamma

\sum
i<j

wij \^xij \~xij \leq
\sum

(i,j)\in E

x\ast ij .

346 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

Proof. We just need to show that the assumptions of Theorem 6.1 are satisfied. Let x\ast ij be
the optimal solution vector for the sparsest cut LP relaxation (3.2). Note that x\ast ij \leq n/(n - 1)
for all i, j. If this were not the case and x\ast uv > n/(n - 1) for some pair (u, v), then there would
exist (n - 2) nodes k distinct from u and v such that n/(n - 1) < x\ast uv \leq x\ast uk + x\ast vk. Then\sum

i<j

x\ast ij \geq x\ast uv +
\sum

u\not =k \not =v

x\ast uk + x\ast vk >
n

n - 1
+ (n - 2)

n

n - 1
= n,

which contradicts the fact that the entries of x\ast sum to n. We see then that all of the
constraints included in LP (6.10) are satisfied by x\ast ij . Note that the only nonzero terms in b

are n and - n, which correspond to \^y1 and \^y2 in \^y. Therefore, - bT \^y = - n\^y1 + n\^y2.

7. Experiments. We implement Dykstra-based solvers for relaxations of sparsest cut
(DykstraSC) and correlation clustering (DykstraCC) in the Julia programming language. We
additionally show how to apply DykstraCC to obtain good empirical results for the mod-
ularity objective. In practice, we solve sparsest cut and modularity relaxations on graphs
with up to 3086 nodes, and dense correlation clustering problems with up to 11204 nodes.
Thus, we solve optimization problems with up to 63 million edges and 7.0\times 1011 constraints.
For correlation clustering, the previous best approaches managed to optimally solve instances
with 13 million constraints [38], or solve a different, but related, LP relaxation on problems
with 5 million edges [44]. For the metric nearness problem, Dhillon, Sra, and Tropp apply
their triangle-fixing algorithm to solve metric nearness problems on random n\times n dissimilarity
matrices with n up to 5000 [19]. However, their method simply runs Dykstra's method until
the change in the solution vector falls below a certain threshold. Since this approach does
not take constraint satisfaction or duality gap into consideration, it comes with no output
guarantees.

7.1. Implementation details for convergence check. Both DykstraSC and DykstraCC
use the detailed convergence check outlined in section 4. To check whether \tau > \rho k for a
constraint tolerance \tau , after every pass through the constraints using Dykstra's method, our
algorithm iterates again through the constraints and returns false as soon as it encounters a
violated constraint, if one exists. Thus in early stages, the method can confirm that \rho k \geq \tau
without visiting all \Theta (n3) constraints each time. After every C iterations, the algorithm
performs a full pass through constraints to check the maximum violation \rho k, and to apply the
entrywise rounding procedure. For the rounding procedure, we set a preliminary threshold \tau 0.
After every C iterations, if \rho k < \tau 0, the algorithm computes the rounded vector xr for a range
of r values. For sparsest cut, \tau 0 = 0.1 and C = 10, and we test each value of r from 2 to 6. In
practice, the rounding procedure significantly increases the method's performance in finding
solutions with constraints satisfied to within machine precision. For correlation clustering we
focus only on solving relaxations to within an overall constraint tolerance of 0.01 (or 0.001 for
related modularity experiments), and we do not see any performance gains using the rounding
procedure. Regardless, by design, the rounding procedure neither dominates the runtime nor
affects the method's ability to converge using the standard Dykstra iterate. In our weighted
correlation clustering experiments, we perform the rounding procedure every C = 20 steps,
leading to an overall runtime increase of around 5--7\%. For modularity clustering, we check
every C = 10 steps, leading to an increase between 10--15\%.

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 347

7.2. Using Gurobi software. In our experiments our aim is obtain high-quality solutions
to metric-constrained relaxations of graph clustering problems. Thus, we compare primarily
against solving the same correlation clustering and sparsest cut relaxations using commercial
Gurobi software. Gurobi possesses a number of solvers for LPs. In practice, we separately run
Gurobi's barrier method (i.e., the interior-point solver), the primal simplex method, and the
dual simplex method. For the interior-point method, Gurobi's default setting is to convert
any solution it finds to a basic feasible solution, but we turn this setting off since we do not
require this of our own solver and we are simply interested in finding any solution to the LP.
In practice, we find that the interior-point solver is the fastest.

For both sparsest cut and correlation clustering we also test an additional lazy-constraint
method when employing Gurobi software. This procedure solves the LP objective over a
subset of metric constraints, checks for violated constraints, and then expands the constraint
set and re-solves the problem until optimality. This procedure is especially helpful for the
correlation clustering objective, though for the sparsest cut objective we find most metric
constraints are tight at optimality, so there is little to no benefit to repeatedly solving the
problem on growing subsets of constraints.

7.3. Real-world graphs. In our experiments we use real-world networks obtained almost
exclusively from the SuiteSparse Matrix Collection [15] and the SNAP repository [36], with
one graph (Vassar85) from the Facebook100 datasets. The graphs we experiment on come
from numerous domains, including citation networks (SmallW and SmaGri), collaboration net-
works (caGrQc, caHepTh, caHepPh, Netscience, Erdos991), web-based graphs (Harvard500,
Polblogs, Email, Vassar95), biological networks (C. El-Neural, C. Elegan), and others (Power,
USAir97, Roget). Before running experiments, we make all edges undirected, remove edge
weights, and find the largest connected component to ensure we are always working with
connected, unweighted, and undirected networks.

7.4. The sparsest cut relaxation. We run DykstraSC on graphs ranging in size from 198
to 3068 nodes. Our machine has two 14-core 2.66 GHz Xeon processors and for ease of re-
producibility we limit experiments to 100GB of RAM. Results are shown in Table 1. We
also display runtimes and convergence plots in Figure 1. Gurobi has an advantage on smaller
graphs, but slows down and then runs out of memory once the graphs scale beyond a few hun-
dred nodes. Since DykstraSC is, in fact, optimizing a quadratic regularization of the sparsest
cut LP relaxation, we also report how close our solution is to the optimal LP solution, either
by comparing against Gurobi or using our a posteriori approximation guarantee, presented in
Corollary 6.2. In nearly all cases we are within 1\% of the optimal LP solution, and in several
cases our solver returns the optimal LP solution.

The fastest results for Gurobi are obtained by running the interior-point solver. Gurobi
runs out of memory when trying to form the entire constraint matrix for problems with more
than 500 nodes, since, when n = 500, the matrix contains over 186 million nonzero entries.
We manage to solve the relaxation on Harvard500 using the lazy constraints approach, though
repeatedly solving subproblems on subsets of metric constraints leads to a very long runtime.
For graphs larger than Harvard500, we run out of memory even when trying this approach.

348 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

Table 1
We solve the LP relaxation for sparsest cut via DykstraSC on 13 graphs. For all datasets but the largest

we set \gamma = 5 and \lambda = 1/n. For Vassar85, the largest and hence most expensive problem, we use \gamma = 2
and \lambda = 1/1000. These parameter settings lead to a faster convergence, at the expense of a slightly worse
approximation guarantee. Both DykstraSC and Gurobi (when it doesn't run out of memory) solve the problems
to within a relative gap tolerance of 10 - 4, and satisfy constraints to within machine precision. The last column
reports the ratio \Delta between the LP objective output by our DykstraSC and the minimum LP score. In cases
where we do not know \Delta exactly, we report an upper bound computed using our a posteriori approximation
guarantees (see section 6.3). Time is given in seconds.

Graph | V | | E| \# constraints Gurobi time Dykstra time \Delta Approx

Jazz 198 2742 3.8\times 106 60 81 1.003
SmallW 233 994 6.2\times 106 93 166 1.001
C.El-Neural 297 2148 1.2\times 107 274 350 1.000
USAir97 332 2126 1.8\times 107 471 511 1.041
Netscience 379 914 2.7\times 107 887 1134 1.000
Erdos991 446 1413 4.4\times 107 2574 1954 1.011
C.El-Meta 453 2025 4.6\times 107 2497 1138 1.000
Harvard500 500 2043 6.2\times 107 18769 1427 1.000
Roget 994 3640 4.9\times 108 out of memory 53449 \leq 1.008
SmaGri 1024 4916 5.4\times 108 out of memory 25703 \leq 1.002
Email 1133 5451 7.3\times 108 out of memory 34621 \leq 1.005
Polblogs 1222 16714 9.1\times 108 out of memory 41080 \leq 1.013
Vassar85 3068 119161 1.4\times 1010 out of memory 155333 \leq 1.165

n(n-1)/2
10

4
10

5
10

6
10

7

R
u

n
ti
m

e
 (

s
)

10
1

10
2

10
3

10
4

10
5

10
6

Number of Iterations
1000 2000 3000 4000 5000

C
on

st
ra

in
t T

ol
/ Q

P
Sc

or
es

-0.05

0

0.05

0.1

0.15

0.2

0.1*Dual/OPT
0.1*Primal/OPT
0.1 = Scaled OPT
Constraint Vio.

Figure 1. On the left we show runtimes for DykstraSC on real-world graphs with 198 to 3068 nodes.
If n is the number of nodes in the graph, then DykstraSC solves for n(n - 1)/2 distance scores. We show
a convergence plot specifically for the Polblogs dataset on the right. The red dotted line indicates the optimal
quadratic objective, normalized to equal 0.1. The (normalized) dual objective (green) always gives a lower bound
on the (normalized) optimal solution, whereas the (normalized) primal objective (blue) is not an upper bound
for the first \approx 500 iterations. We display the maximum constraint violation in black.

7.5. Weighted correlation clustering. We convert several real-world graphs into instances
of correlation clustering using the approach of Wang et al. [50]. The procedure is as follows:

1. Given G = (V,E), compute the Jaccard coefficient between each pair of nodes i, j:
Jij = | N(i) \cap N(j)| /| N(i) \cup N(j)| , where N(u) is the set of nodes adjacent to node u.

2. Apply a nonlinear function on Jaccard coefficients to obtain a score indicating sim-
ilarity or dissimilarity: Sij = log ((1 + Jij - \delta)/(1 - Jij + \delta)) . Here, \delta is set so that
Sij > 0 if Jij > \delta and Sij < 0 when Jij < \delta . Following Wang et al. [50], we fix

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 349

50 100 150 200 250 300

Number of Iterations

-0.2

0

0.2

0.4

0.6

0.8

1
Constraint Tol

Duality Gap

50 100 150 200

Number of Iterations

-0.2

0

0.2

0.4

0.6

0.8

1
Constraint Tol

Duality Gap

Figure 2. We show convergence plots for DykstraCC on caHepTh (left) and caGrQc (right). In the first
several iterations the duality gap (Q(\bfx) - D(\bfy))/D(\bfy) is negative, since Dykstra's method does not guarantee
the primal scores Q(\bfx) will be greater than dual scores D(\bfy) at the beginning of the algorithm. After a few
iterations, the maximum constraint violation (black) decreases significantly and the duality gap steadily goes to
zero. In practice our solver recomputes the maximum constraint violation every 20 iterations, leading to jumps
in the constraint violation curves displayed.

\delta = 0.05.
3. Wang et al. stop after the above step and use Sij scores for their correlation clustering

problems. We additionally offset each entry by \pm \epsilon to avoid cases where edge weights
are zero:

Zij =

\left\{
Sij + \epsilon if Sij > 0,

Sij - \epsilon if Sij < 0,

\epsilon if Sij = 0 and (i, j) \in E,

 - \epsilon if Sij = 0 and (i, j) /\in E.

In the above construction, Sij = 0 indicates there is no strong similarity or dissimilarity
between nodes based on their Jaccard coefficient. If in this case nodes i and j are adjacent,
we interpret this as a small indication of similarity and assign them a small positive weight.
Otherwise, we assign a small negative weight. In all our experiments we fix \epsilon = 0.01. The
sign of Zij indicates whether nodes i and j are similar or dissimilar, and wij = | Zij | >
0 is the nonnegative weight for the associated correlation clustering problem. Results for
running DykstraCC and Gurobi on the resulting signed graphs are shown in Table 2. We
show convergence plots for the two of the graphs in Figure 2.

On problems of this size, we restrict ourselves to using the lazy-constraint approach,
coupled with Gurobi's interior-point solver. In one case, the lazy-constraint method converges
very quickly. Effectively, it finds a small subset of constraints that are sufficient to force all
other metric constraints to be satisfied at optimality. However, Gurobi runs out of memory
on the other large problems considered, indicating that, even if we are extremely careful,
standard off-the-shelf solvers are unable to compete with our Dykstra-based approach.

Because the correlation clustering problems we address are so large, we set \gamma = 1 and run
Dykstra's method until constraints are satisfied to within a tolerance of 0.01. We find that
long before the constraint tolerance reaches this point, the duality gap shrinks below 10 - 4.
We note that although it takes a long time to reach convergence on graphs with thousands of
nodes, DykstraCC has no issues with memory. Monitoring the memory usage of our machine,

350 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

Table 2
DykstraCC solves convex relaxations of correlation clustering with up to 700 billion constraints. The lazy-

constraint Gurobi solver does very well for one very sparse graph, but runs out of memory on all other problems.
We set \gamma = 1, and constraint tolerance to 0.01. Selecting a small \gamma leads to poorer approximation guarantees,
but dramatically decreases the number of needed iterations until convergence. For problems on which we cannot
optimally solve the LP with Gurobi to obtain an approximation ratio \Delta , we report an upper bound.

Graph | V | | E| \# constraints Gurobi time Dykstra time \Delta Approx

power 4941 6594 6.0\times 1010 549 s 7.6 hrs 1.07
caGrQc 4158 13422 3.6\times 1010 out of memory 6.6 hrs \leq 1.33
caHepTh 8638 24806 3.2\times 1011 out of memory 88.3 hrs \leq 1.34
caHepPh 11204 117619 7.0\times 1011 out of memory 173.7 hrs \leq 1.27

we noted that for the 11204 node graph, DykstraCC was using only around 12GB of the
100GB of available RAM. Given enough time, therefore, we expect our method to be able to
solve metric-constrained LPs on a much larger scale. The ability to solve these relaxations on
problems of this scale is already an accomplishment, given the fact that standard optimization
software often fails on graphs with even a few hundred nodes.

7.6. Maximum modularity clustering via LP rounding. For our last experiment we use
DykstraCC to obtain approximations to the popular maximum modularity graph clustering
objective [39]. Although modularity is NP-hard to approximate to within any constant fac-
tor [20], solving its LP relaxation allows practitioners to obtain good a posteriori guarantees
for fast heuristics such as the celebrated Louvain method [11]. Previous work in this area
managed to solve the metric-constrained relaxation of modularity on graphs with up to 235
nodes [1]. Later, Aloise et al. [3] developed an approach for exactly solving modularity which
succeeded on graphs with up to 512 nodes. With our approach we solve relaxations with
thousands of nodes, and can quickly obtain good bounds on modularity for smaller graphs.
Additionally, we demonstrate that rounding the LP and then greedily improving the output
with the Louvain algorithm often leads to clusterings with higher modularity than running
Louvain by itself.

Modularity objective. The maximum modularity objective for a graph G = (V,E) is

(7.1) max
\scrC

M(\scrC) = 1

2| E|
\sum
i,j

\biggl(
Aij -

didj
2| E|

\biggr)
\delta \scrC ij ,

where di is the degree of node i, and Aij is the \{ 0, 1\} indicator for whether i, j are adjacent
in G. The \delta \scrC ij variables encode the clustering, i.e., \delta \scrC ij = 1 if i, j are together in \scrC and \delta \scrC ij = 0
otherwise. In previous work we showed that the modularity objective is a linear function of
a specially weighted correlation clustering objective called LambdaCC [48]. Specifically, if
we are given an input graph G = (V,E) on which we wish to perform maximum modularity
clustering, we construct from it an instance of correlation clustering in which an edge (i, j) \in E
is mapped to a positive edge of weight 1 - didj/(2| E|) in a new signed graph, and (i, j) /\in E
is mapped to a negative edge with weight didj/(2| E|). The modularity objective M for a
clustering \scrC and the corresponding correlation clustering objective CC are then related as

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 351

follows:

(7.2) CC(\scrC) = m(1 - M(\scrC)) -
\sum

(i,j)\in E

didj
2m

+
n\sum

i=1

d2i
4m

,

where m = | E| and n = | V | . We note that this relationship also holds for relaxed clusterings,
i.e., we can replace \delta \scrC ij in (7.1) with (1 - xij) where xij are relaxed distance variables satisfying
metric constraints. One way to upper bound the maximum value ofM is to first approximately
minimize the related instance of correlation clustering using our projection method, and then
compute approximation bounds for the correlation clustering objective using guarantees in
sections 5 and 6. Let \scrC \ast be the optimal clustering for modularity and correlation clustering and
\~\scrC represent the relaxed clustering output by DykstraCC. If we know CC(\~\scrC) \leq (1+ \delta)CC(\scrC \ast)
for some \delta > 0, then using the relationship in (7.2), we can upper bound the maximum
modularity:

(7.3) M(\scrC \ast) \leq M(\~\scrC)
1 + \delta

+
\delta

1 + \delta

\Biggl(
1 -

\sum
(i,j)\in E

didj
2m2

+

n\sum
i=1

d2i
(2m)2

\Biggr)
.

Modularity scores range between - 1 and 1 for any fixed clustering, and for sufficiently small
\delta the additive approximation above will provide a good upper bound.

We run DykstraCC on a subset of the larger graphs from the first experiment. The
weighted correlation clustering problem we are solving here is an instance of LambdaCC with
a small resolution parameter \lambda = 1/(2| E|). In our previous work we showed that for small
resolution parameters, LambdaCC is closely related to the sparsest cut and normalized cut
objectives [48]. In practice, we are not surprised to find, therefore, that applying our solver to
this problem is more similar to our experiments on sparsest cut than the weighted correlation
clustering problems in the previous section. We find that many triangle constraints are tight
and there is a significant memory requirement even for problems with just a few thousand
nodes. Nevertheless, our approach scales to problems an order of magnitude larger than
previous results.

LP rounding and Louvain. We compute the LP relaxation to within a constraint tolerance
of 10 - 3 and a duality gap of 10 - 4. We then round the (xij) variables into clusterings using our
pivoting technique ThreeLP [48]. The method repeatedly selects a uniform random node,
clusters it with all its neighbors within LP-distance 1/3, then removes the cluster and recurses
on the rest of the graph. The method provides no a priori guarantees for M(\scrC \ast) or CC(\scrC \ast),
but is a natural approach to test as it has provable approximation guarantees for a certain
variant of LambdaCC when the resolution parameter is larger than 1/2. The rounding scheme
is very fast, so we take the best of 50 instantiations each time we run it.

The Louvain method is a very popular heuristic developed by Blondel et al. [11] for
maximizing modularity. The method takes an input clustering and repeatedly performs ag-
glomerative moves that greedily improve the objective. We test Louvain in two ways: we
first apply the method on the input clustering in which each node belongs to its own cluster,
which is the standard initialization for Louvain. We then run Louvain as a way to greedily
improve and refine the clustering output by the LP rounding procedure. In practice, we use

352 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

Table 3
We approximate the LP relaxation of modularity using our projection methods with \gamma = 2. Runtime for

solving the relaxation is given in column 3. We compute an upper bound (UB) on the maximum modularity
using (7.3). We obtain clusterings with the Louvain method (Louv), a simple LP rounding technique (3LP),
and by using the output of 3LP as input to Louvain. We report maximum/median modularity scores over 15
trials. Shown in bold are median and maximum scores that are higher than those achieved with only Louvain.

Graph n Time UB Louv 3LP 3LP+Lou

Netscience 379 56s 0.8652 0.8484/0.8417 0.8310/0.8276 \bfzero .\bfeight \bffour \bfeight \bfsix /\bfzero .\bfeight \bffour \bfeight \bffive
C.El-Meta 453 146s 0.5479 0.4478/0.4421 0.2640/0.2479 \bfzero .\bffour \bffive \bfone \bfseven /\bfzero .\bffour \bffour \bfeight \bffive
Erdos991 446 167s 0.6602 0.5374/0.5293 0.3498/0.3441 \bfzero .\bffive \bfthree \bfnine \bfone /\bfzero .\bffive \bfthree \bfsix \bfnine
Harvard500 500 167s 0.7630 0.7386/0.7349 0.6868/0.6817 0.7386/\bfzero .\bfseven \bfthree \bfeight \bfsix
Roget 994 2189s 0.7304 0.5438/0.5383 0.2938/0.2888 \bfzero .\bffive \bffour \bfseven \bftwo /\bfzero .\bffive \bffour \bfthree \bffour
SmaGri 1024 1897s 0.6124 0.4755/0.4697 0.2137/0.2066 \bfzero .\bffour \bfseven \bfseven \bfthree /\bfzero .\bffour \bfseven \bffive \bfseven
Email 1133 3203s 0.6880 0.5788/0.5766 0.3356/0.3240 \bfzero .\bffive \bfeight \bfone \bfone /\bfzero .\bffive \bfseven \bfeight \bfnine
Polblogs 1222 3638s 0.5170 0.4270/0.4268 0.1658/0.1300 0.4270/\bfzero .\bffour \bftwo \bfseven \bfzero
Vassar85 3068 48.2hr 0.5641 0.3958/0.3957 0.0950/0.0940 0.3958/0.3957

the Louvain software of Jeub et al. [30], which includes randomized variations that can lead to
higher-modularity outputs. In Table 3 we report the best modularity and median modularity
returned over 15 runs for each approach. We observe that LP rounding on its own is not
competitive with Louvain. This is not surprising given that the rounding scheme performs
simplistic clustering moves that are easy to analyze, but are less sophisticated and intelligent
than the Louvain heuristics. However, we notice that combining LP rounding with the Lou-
vain method leads to a more robust approach with higher median and maximum scores. While
the improvement is only slight, it is consistent. This indicates that solving the LP relaxation
is useful not only for providing bounds on NP-hard objectives, but can also be used as a
guide for making heuristic algorithms more robust. This suggests future work in developing
LP rounding techniques that are specifically designed to initialize greedy local heuristics like
Louvain using global knowledge about the problem instance.

8. Discussion and future challenges. We have developed an approach for solving expen-
sive convex relaxations of clustering objectives that works on a much larger scale than was
previously possible. We now observe several challenges that seem inherent in improving this
approach, without significantly departing from the application of projection methods. We
tried variants of Bauschke's method [7] and Haugazeau's projection method [25, 8], which do
not compute dual variables as Dykstra's does. Such methods hence require only O(n2) mem-
ory, instead of O(n3), but come with significantly worse convergence guarantees. Because it is
hard to determine, in practice, when these methods have converged, it is difficult to use them
to obtain an output satisfying any guarantees with respect to the optimal solution. Other
natural approaches to consider are the use of parallelization or randomization. Parallel ver-
sions of Dykstra's method exist [28], but they rely on averaging a large number of very tiny
changes in each iteration, equal to the number of constraints. Since in our case there are O(n3)
constraints, we find that, in practice, this averaging approach leads to changes that are so
small that no meaningful progress can be made from one iteration to the next. The challenge
in using a randomized approach (see [29]) is that visiting constraints at random leads to a

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 353

much higher cost for visiting the same number of constraints. This is because accessing dual
variables at random from a dictionary is slower in practice than sequentially visiting elements
in an array of dual variables.

REFERENCES

[1] G. Agarwal and D. Kempe, Modularity-maximizing graph communities via mathematical programming,
Eur. Phys. J. B, 66 (2008), pp. 409--418, https://doi.org/10.1140/epjb/e2008-00425-1.

[2] N. Ailon, M. Charikar, and A. Newman, Aggregating inconsistent information: Ranking and clus-
tering, J. ACM, 55 (2008), 23.

[3] D. Aloise, S. Cafieri, G. Caporossi, P. Hansen, L. Liberti, and S. Perron, Column generation
algorithms for exact modularity maximization in networks, Phys. Rev. E, 82 (2010), 046112, https:
//doi.org/10.1103/PhysRevE.82.046112.

[4] S. Arora, S. Rao, and U. Vazirani, Expander flows, geometric embeddings and graph partitioning, J.
ACM, 56 (2009), 5.

[5] D. Avis and J. Umemoto, Stronger linear programming relaxations of max-cut, Math. Program., 97
(2003), pp. 451--469, https://doi.org/10.1007/s10107-003-0423-5.

[6] N. Bansal, A. Blum, and S. Chawla, Correlation clustering, Mach. Learn., 56 (2004), pp. 89--113.
[7] H. H. Bauschke, The approximation of fixed points of compositions of nonexpansive mappings in Hilbert

space, J. Math. Anal. Appl., 202 (1996), pp. 150--159, https://doi.org/10.1006/jmaa.1996.0308.
[8] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert

Spaces, Springer, Cham, 2017.
[9] J. Berg and M. J\"arvisalo, Cost-optimal constrained correlation clustering via weighted partial maxi-

mum satisfiability, Artificial Intelligence, 244 (2017), pp. 110--142.
[10] E. G. Birgin and M. Raydan, Robust stopping criteria for Dykstra's algorithm, SIAM J. Sci. Comput.,

26 (2005), pp. 1405--1414, https://doi.org/10.1137/03060062X.
[11] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, Fast unfolding of communities

in large networks, J. Stat. Mech., 2008 (2008), P10008, https://doi.org/10.1088/1742-5468/2008/10/
P10008.

[12] J. Brickell, I. S. Dhillon, S. Sra, and J. A. Tropp, The metric nearness problem, SIAM J. Matrix
Anal. Appl., 30 (2008), pp. 375--396, https://doi.org/10.1137/060653391.

[13] M. Charikar, V. Guruswami, and A. Wirth, Clustering with qualitative information, J. Comput.
System Sci., 71 (2005), pp. 360--383, https://doi.org/10.1016/j.jcss.2004.10.012.

[14] S. Chawla, K. Makarychev, T. Schramm, and G. Yaroslavtsev, Near optimal LP rounding al-
gorithm for correlation clustering on complete and complete k-partite graphs, in Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, ACM, New York,
2015, pp. 219--228.

[15] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans. Math. Softw.,
38 (2011), 1, https://doi.org/10.1145/2049662.2049663.

[16] A. Dax, The adventures of a simple algorithm, Linear Algebra Appl., 361 (2003), pp. 41--61, https:
//doi.org/10.1016/S0024-3795(01)00600-0.

[17] E. D. Demaine and N. Immorlica, Correlation clustering with partial information, in Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, S. Arora, K. Jansen,
J. D. P. Rolim, and A. Sahai, eds., Lecture Notes in Comput. Sci. 2764, Springer, Berlin, 2003,
pp. 1--13.

[18] I. S. Dhillon, S. Sra, and J. A. Tropp, The Metric Nearness Problems with Applications, Department
of Computer Sciences, Technical Report TR-03-23, The University of Texas at Austin, Austin, TX,
2003.

[19] I. S. Dhillon, S. Sra, and J. A. Tropp, Triangle fixing algorithms for the metric nearness problem,
in Proceedings of the 17th International Conference on Neural Information Processing Systems, MIT
Press, Cambridge, MA, 2004, pp. 361--368, http://dl.acm.org/citation.cfm?id=2976040.2976086.

https://doi.org/10.1140/epjb/e2008-00425-1
https://doi.org/10.1103/PhysRevE.82.046112
https://doi.org/10.1103/PhysRevE.82.046112
https://doi.org/10.1007/s10107-003-0423-5
https://doi.org/10.1006/jmaa.1996.0308
https://doi.org/10.1137/03060062X
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1088/1742-5468/2008/10/P10008
https://doi.org/10.1137/060653391
https://doi.org/10.1016/j.jcss.2004.10.012
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1016/S0024-3795(01)00600-0
https://doi.org/10.1016/S0024-3795(01)00600-0
http://dl.acm.org/citation.cfm?id=2976040.2976086

354 N. VELDT, D. F. GLEICH, A. WIRTH, AND J. SAUNDERSON

[20] T. N. Dinh, X. Li, and M. T. Thai, Network clustering via maximizing modularity: Approximation
algorithms and theoretical limits, in Proceedings of the 2015 IEEE International Conference on Data
Mining, ICDM 2015, IEEE, Washington, DC, 2015, pp. 101--110.

[21] R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc., 78 (1983),
pp. 837--842.

[22] D. Emanuel and A. Fiat, Correlation clustering -- Minimizing disagreements on arbitrary weighted
graphs, in European Symposium on Algorithms, Springer, Berlin, Heidelberg, 2003, pp. 208--220.

[23] R. Escalante and M. Raydan, Alternating Projection Methods, SIAM, Philadelphia, 2011, https:
//doi.org/10.1137/9781611971941.

[24] D. Glasner, S. N. Vitaladevuni, and R. Basri, Contour-based joint clustering of multiple segmen-
tations, in Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2011, IEEE Computer Society, Washington, DC, 2011, pp. 2385--2392, https://doi.org/10.
1109/CVPR.2011.5995436.

[25] Y. Haugazeau, Sur les in\'equations variationnelles et la minimisation de fonctionnelles convexes, Ph.D.
thesis, Universite de Paris, Paris, France, 1968.

[26] C. Hildreth, A quadratic programming procedure, Naval Res. Logist. Quart., 4 (1957), pp. 79--85.
[27] J. P. Hou, A. Emad, G. J. Puleo, J. Ma, and O. Milenkovic, A new correlation clustering method

for cancer mutation analysis, Bioinformatics, 32 (2016), pp. 3717--3728, https://doi.org/10.1093/
bioinformatics/btw546.

[28] A. N. Iusem and A. R. De Pierro, On the convergence of Han's method for convex programming with
quadratic objective, Math. Programming, 52 (1991), pp. 265--284.

[29] N. Jamil, X. Chen, and A. Cloninger, Hildreth's algorithm with applications to soft constraints for
user interface layout, J. Comput. Appl. Math., 288 (2015), pp. 193--202, https://doi.org/https://doi.
org/10.1016/j.cam.2015.04.014.

[30] L. G. S. Jeub, M. Bazzi, I. S. Jutla, and P. J. Mucha, A Generalized Louvain Method for Community
Detection Implemented in MATLAB, 2011--2017, 2017, http://netwiki.amath.unc.edu/GenLouvain/.

[31] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo, Higher-order correlation clustering for image seg-
mentation, in Proceedings of the 24th International Conference on Neural Information Processing
Systems, Curran Associates Inc., Red Hook, NY, 2011, pp. 1530--1538; http://dl.acm.org/citation.
cfm?id=2986459.2986630.

[32] K. Lang and S. Rao, Finding near-optimal cuts: An empirical evaluation, in Proceedings of the Fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1993, SIAM, Philadelphia, 1993,
pp. 212--221.

[33] K. J. Lang, M. W. Mahoney, and L. Orecchia, Empirical evaluation of graph partitioning using
spectral embeddings and flow, in International Symposium on Experimental Algorithms, SEA 2009,
Springer, Berlin, Heidelberg, 2009, pp. 197--208.

[34] J.-H. Lange, A. Karrenbauer, and B. Andres, Partial optimality and fast lower bounds for weighted
correlation clustering, in Proceedings of the 35th International Conference on Machine Learning,
ICML 2018, Stockholmsm\"assan, Stockholm, Sweden, 2018, PMLR, pp. 2892--2901; available online
at http://proceedings.mlr.press/v80/lange18a.html.

[35] T. Leighton and S. Rao, Multicommodity max-flow min-cut theorems and their use in designing ap-
proximation algorithms, J. ACM, 46 (1999), pp. 787--832.

[36] J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset Collection, http://snap.
stanford.edu/data, June 2014.

[37] O. L. Mangasarian, Normal solutions of linear programs, in Mathematical Programming at Oberwolfach
II, Math. Programming Stud. 22, Springer, Berlin, Heidelberg, 1984, pp. 206--216.

[38] A. Miyauchi, T. Sonobe, and N. Sukegawa, Exact clustering via integer programming and maximum
satisfiability, in Thirty-Second AAAI Conference on Artificial Intelligence, 2018; available online at
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16176.

[39] M. E. Newman and M. Girvan, Finding and evaluating community structure in networks, Phys. Rev.
E, 69 (2004), 026113.

[40] S. Poljak and Z. Tuza, The expected relative error of the polyhedral approximation of the max-cut
problem, Oper. Res. Lett., 16 (1994), pp. 191--198, https://doi.org/10.1016/0167-6377(94)90068-X.

https://doi.org/10.1137/9781611971941
https://doi.org/10.1137/9781611971941
https://doi.org/10.1109/CVPR.2011.5995436
https://doi.org/10.1109/CVPR.2011.5995436
https://doi.org/10.1093/bioinformatics/btw546
https://doi.org/10.1093/bioinformatics/btw546
https://doi.org/https://doi.org/10.1016/j.cam.2015.04.014
https://doi.org/https://doi.org/10.1016/j.cam.2015.04.014
http://netwiki.amath.unc.edu/GenLouvain/
http://dl.acm.org/citation.cfm?id=2986459.2986630
http://dl.acm.org/citation.cfm?id=2986459.2986630
http://proceedings.mlr.press/v80/lange18a.html
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16176
https://doi.org/10.1016/0167-6377(94)90068-X

METRIC-CONSTRAINED OPTIMIZATION FOR CLUSTERING 355

[41] G. J. Puleo and O. Milenkovic, Correlation clustering with constrained cluster sizes and extended
weights bounds, SIAM J. Optim., 25 (2015), pp. 1857--1872, https://doi.org/10.1137/140994198.

[42] G. J. Puleo and O. Milenkovic, Correlation clustering and biclustering with locally bounded errors, in
Proceedings of the 33rd International Conference on International Conference on Machine Learning,
ICML 2016, 2016, pp. 869--877, http://dl.acm.org/citation.cfm?id=3045390.3045483.

[43] C. Swamy, Correlation clustering: Maximizing agreements via semidefinite programming, in Proceed-
ings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, SIAM,
Philadelphia, 2004, pp. 526--527.

[44] P. Swoboda and B. Andres, A message passing algorithm for the minimum cost multicut problem, in
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
IEEE, 2017, pp. 1617--1626.

[45] R. J. Tibshirani, Dykstra's algorithm, ADMM, and coordinate descent: Connections, insights, and
extensions, in Proceedings of the 31st International Conference on Neural Information Processing
Systems, Curran Associates Inc., Red Hook, NY, 2017, pp. 517--528; http://dl.acm.org/citation.cfm?
id=3294771.3294821.

[46] J. Van Gael and X. Zhu, Correlation clustering for crosslingual link detection, in Proceedings of the
20th International Joint Conference on Artifical Intelligence, IJCAI 2007, Morgan Kaufmann, San
Francisco, 2007, pp. 1744--1749, http://dl.acm.org/citation.cfm?id=1625275.1625558.

[47] A. van Zuylen and D. P. Williamson, Deterministic pivoting algorithms for constrained ranking and
clustering problems, Math. Oper. Res., 34 (2009), pp. 594--620, https://doi.org/10.1287/moor.1090.
0385.

[48] N. Veldt, D. F. Gleich, and A. Wirth, A correlation clustering framework for community detection,
in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 439--448, https://doi.org/10.1145/
3178876.3186110.

[49] S. N. Vitaladevuni and R. Basri, Co-clustering of image segments using convex optimization applied
to EM neuronal reconstruction, in Proceedings of the 2010 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2010, IEEE, pp. 2203--2210, https://doi.org/10.1109/CVPR.2010.
5539901.

[50] Y. Wang, L. Xu, Y. Chen, and H. Wang, A scalable approach for general correlation clustering, in
International Conference on Advanced Data Mining and Applications, ADMA 2013, Springer, Berlin,
Heidelberg, 2013, pp. 13--24.

[51] A. Wirth, Approximation Algorithms for Clustering, Ph.D. thesis, Princeton University, Princeton, NJ,
2004.

[52] A. Wirth, Correlation clustering, in Encyclopedia of Machine Learning, Springer, Boston, 2010, pp. 227--
231, https://doi.org/10.1007/978-0-387-30164-8 176.

https://doi.org/10.1137/140994198
http://dl.acm.org/citation.cfm?id=3045390.3045483
http://dl.acm.org/citation.cfm?id=3294771.3294821
http://dl.acm.org/citation.cfm?id=3294771.3294821
http://dl.acm.org/citation.cfm?id=1625275.1625558
https://doi.org/10.1287/moor.1090.0385
https://doi.org/10.1287/moor.1090.0385
https://doi.org/10.1145/3178876.3186110
https://doi.org/10.1145/3178876.3186110
https://doi.org/10.1109/CVPR.2010.5539901
https://doi.org/10.1109/CVPR.2010.5539901
https://doi.org/10.1007/978-0-387-30164-8_176

	Introduction
	Background and related work
	Graph clustering and metric-constrained linear programs
	Correlation clustering
	Sparsest cut
	Metric nearness

	Projection methods for metric-constrained optimization
	Efficient local updates
	Sparse storage of dual variables
	Robust stopping criteria
	Entrywise rounding procedure

	Approximation guarantees for clustering objectives
	Correlation clustering
	Sparsest cut

	Improved a posteriori approximations
	A first strategy for improved bounds
	Improved guarantees by solving a small LP
	A bound for sparsest cut

	Experiments
	Implementation details for convergence check
	Using Gurobi software
	Real-world graphs
	The sparsest cut relaxation
	Weighted correlation clustering
	Maximum modularity clustering via LP rounding

	Discussion and future challenges

